

N. Castillo¹ (ncast169@fiu.edu), J. Rehage¹, R. Santos¹, A. Adams², R. Boucek², T. Brodin ^{3,4}, J. Fick⁴

in Science and Technology ¹ Florida International University, Miami, FL, USA ² The Bonefish and Tarpon Trust, Coral Gables, FL ³ SLU University, Umeå, Sweden ⁴ Umeå University, Umeå, Sweden

Analysis of bonefish plasma and muscle tissue reveals the presence of 14 different pharmaceuticals in bonefish from South Florida, Puerto Rico, and the Bahamas at levels with potential physiological effects

Bonefish : An Important Fishery in Decline

Bonefish, Albula Vulpes, is an ecologically and economically important mesoconsumer species found throughout the Caribbean Basin and South Florida in coastal areas. The bonefish recreational fishery accounts for \$154 million in annual revenue in the Florida Keys alone (Fedler 2013).

A fishery in decline

- > A marked decline in Bonefish population in South Florida over the past few decades
- \succ The specific cause is unknown.

otal Fish Sampled and Analyzed South Florida and Caribbear SOUTH FLORIDA 35 FISH SAMPLED FISH ANALYZE

Spatial Distribution of Bonefish Sampling

Spatial Distribution in the Caribbean

> Sampling from the Bahamas, Puerto Rico, Mexico, and Belize > 31 of the target 45 fish collected with 15 fish from the Bahamas analyzed and 1 fish from Culebra, Puerto Rico analyzed

Does water quality play a role in this decline?

Do pharmaceutical contaminants have a potential to impact bonefish?

Project Design and Hypothesis

Design

Component 1A. Sampling of South Florida bonefish blood plasma **Component 1B.** Sampling of bonefish from Puerto Rico, Bahamas, Belize, and Mexico **Component 2.** Examine the trophic pathway by prey sampling along transects in South Florida

Hypotheses

1. Presence of pharmaceuticals highest in South Florida.

Florida > Caribbean **Biscayne Bay > Upper Keys > Lower Keys**

2. Pharmaceutical levels in prey species will be highest in locations close to nearshore canals, and highest in Biscayne Bay.

Spatial Distribution in South Florida

- > Sampling from Biscayne Bay in the north through the Florida Keys to the Marquesas west of Key West
- > Bonefish collected in nearshore shallow water habitat
- \geq 35 of the target 45 fish collected with 9 analyzed for pharmaceuticals

Pharmaceutical Effects on Fish

Pharmaceuticals are **persistent and prevalent** contaminants in the marine environment (Ojemaye 2018; McEneff et. al. 2014). Once in the marine environment, pharmaceuticals can **bioaccumulate in fish**, since they are largely nonpolar, and affect their target receptors resulting in numerous behavioral and physiological alterations (Corcoran et. al. 2010; Fabbri et. al. 2016; Brodin 2014).

Pharmaceutical Effects: Effect Ratio <1

Bioconcentration Factor Model

The BCF model found effects for 10 Bahamas pharmaceutical concentrations and 4 South Florida Pharmaceutical concentrations

Blood Plasma to Water Concentration Model

The Blood:Plasma model found effects for 8 **Bahamas pharmaceutical concentrations** and **2** South Florida Pharmaceutical concentrations

The Blood Plasma Model as an Estimate for Chronic Pharmaceutical Effects

The Blood Plasma Model allows for an estimate of chronic receptor mediated responses in fish based on the conservation of many enzyme and receptor systems across mammals and fish (Huggett et. al. 2003; Schreiber et. al. 2011; Fick et. al. 2010; Owen et. al. 2007).

Based on this conservation of enzymes and receptors, an estimate of chronic

Key Pharmaceutical Results

Florida

8 of 9 fish with pharmaceuticals, 16 total detections 4 pharmaceutical detections with ER < 1 Bahamas 13 of 15 fish with pharmaceuticals, 23 total detections 10 pharmaceutical detections with ER < 1 **Puerto Rico** 1 of 1 fish with pharmaceuticals, 1 total detection

effects is quantified by a calculated Effect Ratio using the measured concentrations in the bonefish.

FIU

Effect Ratio (ER) = $H_TPC/F_{SS}PC$	
ED < 1	$Log P_{Blood:Water} = 0.73 \times Log K_{ow} - 0.88$
$EK \leq T$	Log BCF = 0.85 (log K _{ow}) – 0.70
Potential Physiological Effects	$F_{SS}PC = EC \times (P_{Blood:Water} \text{ or BCF})$

0 pharmaceutical detections with ER < 1 **Bahamas > Florida > Puerto Rico**

Key Findings and Future Work

Acknowledgements

Key Findings > The most common pharmaceuticals were **betablockers** followed by **psychoactive** pharmaceuticals and antihistamines

> All plasma samples had detectable pharmaceuticals > Initial results show more pharmaceuticals in the Bahamas

Future Work

> Further sample collection in Puerto Rico and South Florida > Prey sampling in South Florida

