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Mass Spectrometry has been demonstrated to be the tool of

choice for identifying and localizing lipid species in human

tissue.3-5 With relatively simple sample preparation steps,

human ex-vivo skin tissue layers can be described by their

composition in a label-free manner. Knowledge of the lipid

composition during skin repair may lead to improved treatment

of both acute and chronic wounds.

SIMS Mass Spectra of Skin

Figure 9. TOF-SIMS based semi-quantitation of cholesterol

sulfate, sphingomyelin, ‘Nuclei’-like species, and long chain fatty

acids. Asterisks denote significate difference (unpaired t-test:

**p≤0.01, *p≤0.05).
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Skin repair is a significant aspect of human health. The skin

serves as a barrier which protects against pathogens and

prevents transepidermal water loss. In order to maintain a

functional barrier, it is vital that a precise assembly of lipids be

present. 1,2 While the makeup of healthy stratum corneum and

epidermis is generally understood, the role of lipids involved in

skin repair has not been extensively studied. In the present

work, Time-of-Flight Secondary Ion Mass Spectrometry (TOF-

SIMS) is applied to characterize the chemical composition of

newly formed epidermis following an initial wound.

For the first time, the distribution of lipids from human skin is

observed as a function time in an ex-vivo acute wound. Using

Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS),

fatty acids, cholesterol sulfate, and other lipids can be

visualized in a label-free manner directly from cryo-sectioned

and dehydrated tissue. This work can lead to improved

understanding of the lipids role during skin repair, and may

lead to better therapeutic tools for treatment of non-healing

chronic wounds.

Figure 2. Typical Negative ion mode SIMS spectra. Signals from

cholesterol sulfate, sphingomyelin (SM), and Triacylglycerides

(TGs) are denoted.

Figure 3. Typical Positive ion mode SIMS spectra. Signals from

Diacyglycerides (DGs) and TGs are denoted.

Figure 4. H&E staining of a parallel tissue slice and TOF-SIMS

imaging of a similar region of interest.

TOF-SIMS instrumentation

𝑌𝑆𝐼 =
𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝐼𝑜𝑛 𝑐𝑜𝑢𝑛𝑡(𝐴𝑟𝑒𝑎)

𝑅𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑐𝑚)2 × 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝐼𝑜𝑛 𝑓𝑙𝑢𝑒𝑛𝑐𝑒 ൗ𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑖𝑜𝑛𝑠
𝑐𝑚2

ION-TOF TOF-SIMS V

• 25keV Bi3
+ primary ion beam

• 1.6 µm pixel size, 3×1012 ions•cm-2 Primary Ion Dose
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Figure 1. Sample preparation steps during 2D-MSI-TOF-SIMS

• TOF-SIMS imaging complements H&E and IHC staining, and

is a label-free technique.

• Lipid species such as cholesterol sulfate and long chain fatty

acids can be observed in the top-most layer of the epidermis,

consistent with literature on the stratum corneum.6

• Depending incubation time, newly re-epithelialized skin was

observed to have relatively deficient levels of cholesterol

sulfate, sphingomyelin, and long chain fatty acids (C22-C28).
TOF detector
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Figure 5. Unwounded tissue region, incubated 48 hrs.

Figure 6. Re-epithelialized tissue region, incubated 48 hrs.

Figure 7. Unwounded tissue region, incubated 0 hrs.

Figure 8. Re-epithelialized tissue region, incubated 0 hrs.
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